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Abstract 

Many research-related classes present probability as a unified approach based upon mathematical axioms, 

but neglect the diversity of various probability theories and their associated philosophical assumptions. 

Although currently the dominant statistical and probabilistic approach is the Fisherian tradition, the use of 

Fisherian significance testing of the null hypothesis and its probabilistic inference has been an ongoing 

debate. This paper attempts to explore the richness and complexity of the ideas of probability with the 

emphasis on the relationships between Fisherian and other probability theories. First, it clarifies the 

differences between Fisher and Jeffreys and explains the background history relating to Fisher’s quest for 

certainty. Second, it explains the differences between Fisher and Pearson and explains the limitations of 

the Fisherian approach. In addition, it argues that although Fisher criticized the Bayesian school for its 

alleged lack of objectivity, Fisher’s quest for certainty is driven by his subjective faith in experimental 

methods, eugenics and Darwinism. Last, it will briefly introduce the synthesized approaches by Berger 

and Pawitan, respectively, as a possible remedy. 
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Balkanization and Unification of Probability 

 

Introduction 

Use of hypothesis testing and its probabilistic inference has been an ongoing debate for over two 

decades (Harlow, Mulaik, & Steiger, 1997). While many authors (e.g. Hubbard & Bayarri, 2003) 

identified that the current form of hypothesis testing is a fusion of incompatible methodological traditions 

established by Fisher and Neyman/Pearson, respectively, very few people are aware of the historical 

background from which the dispute arose. When I was in graduate school, my mentor always advised me, 

“Be intimate with the data. Always try to understand how and where the data come from.” By the same 

token, it is beneficial for researchers to know what the social and academic cultures were when Fisher 

developed his school of thought, what philosophy and worldview Fisher embraced, what research goals 

he tried to accomplish, and how Fisherian probability is related to other schools of thought. By knowing 

this information, we will be in a better position to judge the appropriateness of use of hypothesis testing 

and probabilistic inference based upon theoretical distributions. In other words, the inquiry of the 

meanings of statistical and probabilistic inferences can be illuminated by analysis in the perspectives of 

philosophy and history of science.  

Although philosophers, such as Carnap (1950) and Hacking (1990, 2001), and historian of science 

Howie (2002) had devoted tremendous efforts to analyze statistics and probability with a wide horizon, 

cross-disciplinary dialogues are not common in this topic. For example, in the beginning of the 20th 

century, statistician Fisher and philosophers von Mises and Reichenbach independently devoted efforts to 

construct their own versions of frequency theories of probability. Salmon (1967), a student of 

Reichenbach, credited Reichenbach as the developer of the frequency theory without a single word about 

Fisher. In discussing philosophical foundations of probability theory, Weatherford (1982) also ignored 

Fisher entirely; he emphasized the role of von Mises and Reichenbach in the development of frequency 

theory, of course. Nonetheless, statisticians are equally self-centered. During the early 20th century, von 

Mises was not widely cited in statistics texts or debates of the Royal Statistical Society, in which Fisher 
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played an active role (Howie, 2002). While giving guidelines to accessing probability, risk and statistics, 

Everitt (1999) mentioned the work of Fisher only. Not surprisingly, neither von Mises nor Reichenbach 

appears on Everitt’s radar screen.  

Owing to the Balkanization of probability theories, probability remains a confusing concept. For 

example, currently the Fisherian hypothesis testing school dominates quantitative methodology, but few 

people realize that the current hypothesis testing is a fusion of Fisher’s and Neyman/Pearson’s probability 

theories and statistical methodologies, which contain many incompatible elements. Even though the 

differences between Fisher and Neyman/Pearson was discussed by statisticians, the relationships among 

biometry, Mendelism, Darwinism, and Fisherism were rarely mentioned. In addition, the dispute between 

Fisher’s frequency view of probability and the Bayesian view of probability is always simplified as a 

battle between an objective-oriented approach and a subjective-oriented one; nonetheless, Fisher’s quest 

for objectivity and certainty is driven by his bias towards eugenics and evolution. 

This paper carries multiple facets. First, it attempts to clarify the differences between Fisher and 

Jeffreys, and the background history relating to Fisher’s quest for certainty. It argues that Fisher’s quest 

for certainty is driven by his faith in experimental methods, eugenics and Darwinism. Second, it 

illustrates the differences between Fisher and Pearson, and why the so-called certain and objective 

approach is not really objective and certain. In spite of all these differences, unification of probabilistic 

inferences is still possible. Hence, at the end it will briefly introduce the synthesized approaches by 

Berger and Pawitan, respectively.  

Differences between Fisher and Jeffreys  

In Fisher’s early career, he emphasized the certainty of science and proposed a testing model that 

yields a dichotomous answer. On the other hand, Harold Jeffreys embraced the Bayesian approach, which 

defines probability in terms of the degree of belief. In the Bayesian approach, a researcher starts with a 

prior probability and the posterior probability is updated by subsequent evidence. According to Jeffreys, 

use of prior probabilities is no embarrassment, since priors represent the expertise or background 
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knowledge a scientist brings to the data. If the scientist does not know much about the subject matter, 

even complete ignorance is a state of knowledge that could be quantified in probabilistic terms. 

The issue of the hypothetical infinite population is another “battlefield” for Fisher and Jeffreys. In the 

Fisherian school, inference is a process of connecting the observed sample and the unobserved population 

using the sampling distribution as a bridge. Jeffreys asserted that scientists are not interested in the 

properties of some remote, hypothetical population. Rather, they are concerned with particular cases here 

and now. However, Fisher said nothing about how to transfer a probability statement from a population to 

an individual (Howie, 2002). Put simply: It doesn’t help me at all that a doctor tells me the treatment is 

effective for the cancer patient population in the long run; I just want to know whether the treatment 

would work for me. Further, the target population to which inferences are made is infinite. To Jeffreys, 

Fisher’s view of probability that involves infinities should be rejected as meaningless. Jeffreys maintained 

that researchers should be interested in the obtained data, not a sampling distribution averaged over all 

possible samples (Howie, 2002).  

Fisher, who disliked vagueness and subjectivity, was strongly opposed to Jeffreys and his Bayesian 

colleagues (Howie, 2002). To Fisher it was absurd to confine probability to actual data, whose properties 

vary from time to time, from place to place, and from person to person; probability should carry objective 

and invariant properties that can be derived from mathematics. As a competent mathematician, Fisher 

constructed three criteria of desirable properties of estimators to the unknown population, namely, 

unbiasedness, consistency, and efficiency (Eliason, 1993). A detailed mathematical demonstration of 

these properties is beyond the scope of this paper; nevertheless, the following brief description of Fisher’s 

approach demonstrates how Fisher elegantly constructed an objective approach to statistics and 

probability even if the hypothetical population is unknown in distribution and infinite is size. 
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Figure 2. Unbiased estimator. 

 

 

In Figure 2, the bell-shaped curve denotes the hypothetical distribution. The red line represents the 

population parameter while the yellow line represents the estimation. If the estimated parameter is the 

same as the true parameter, this estimation is considered unbiased. However, an estimator has variance or 

dispersion. In Figure 2 the green line with arrows at both ends indicates that the estimator may fall 

somewhere along the dispersion. An efficient estimator is the one that has achieved the lowest possible 

variance among all other estimators, and thus it is the most precise one. Moreover, the goodness of the 

estimation is also tied to the sample size. As the sample size increases, the difference between the 

estimated and the true parameters should be smaller and smaller. If this criterion is fulfilled, this estimator 

is said to be consistent. Hence, researchers can make probabilistic inferences to hypothetical populations 

using these objective criteria.  

Fisher and experimental methods  

At first glance, Fisher’s “objective” approach sounds more convincing than his Bayesian counterpart, 

and it is no wonder that it is welcomed by most quantitative researchers. Undoubtedly the Fisherian 

hypothesis testing has currently overshadowed Bayesianism and other quantitative methodologies. As 

Berger (2000) noted, today many universities do not offer Bayesian-related courses in their statistical 

training. Once a journal reviewer commented that my article should focus on mainstream quantitative 
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methods, such as Fisherian hypothesis testing, rather than “marginal” approaches such as Bayesianism. 

On the other hand, Bayesianism is very popular among philosophers (e.g. van Fraassen, Brad Armendt). 

Why frequentism dominates statistics and Bayesianism is popular in philosophy is a very interesting topic 

for historians of science. One of the answers is that besides a sense of objectivity, frequentism also 

provides scientists a sense of certainty. 

The difference between the Fisherian and the Bayesian schools could be understood through the 

perspective of Fisher’s quest for certainty. Fisher conducted research in biometrics and agricultural 

sciences, in which data were collected from experimental methods. On the other hand, his Bayesian rival 

Jeffreys, who was in geophysics and astrophysics, did not enjoy the luxury of what Fisher had and was 

able to collect fragmented and ambiguous data only. It is obvious that geophysicists and astrophysicists 

cannot manipulate the solar system and the earth core for experimentation. Direct observations are also 

difficult. Hence, it is no wonder that Jeffreys interpreted probability as a degree of belief due to inherent 

limitations. However, with a strong experimental background, Fisher asserted that objective science must 

have an empirical starting point and yield an answer with a high degree of certainty (Howie, 2002).  

Darwinism, Mendelism, and Biometrics 

Unfortunately, while Fisher criticized the subjectivity of the Bayesian approach, he might not be 

aware that he was affected by his own subjectivity— his pre-determined agenda on biological philosophy 

and political/social policy. On one hand, Fisher was very critical of Jeffreys and Pearson. For instance, he 

regarded the Bayesian approach as “more a consequence of insufficient schooling than a definite wish to 

advocate the epistemic interpretation” (cited in Howie, 2002, p.122). During the dispute between Fisher 

and Pearson in the 1920s, “Fisher kept up a steady barrage and rarely missed a chance to either attack 

Pearson directly or snipe at his advocacy of Inverse Probability.” Fisher boldly claimed that his method of 

estimating population parameters was efficient and sufficient, but Pearson’s methods were inefficient, 

insufficient, or inconsistent (Howie, 2002, p.66)  

On the other hand, Fisher was very forgiving to Gregor Mendel, the father of genetics, even though 

he proved that Mendel was dishonest in interpreting the results of his genetics experiments (Press & 
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Tanur, 2001; Fisher, 1936). Mendel established the notion that physical properties of species are subject 

to heredity.  In accumulating evidence for his views, Mendel conducted a fertilization experiment in 

which he followed several generations of axial and terminal flowers to observe how specific genes were 

carried from one generation to another.  On subsequent examination of the data using Chi-square tests of 

association, Fisher (1936) found that Mendel's results were so close to the predicted model that residuals 

of the size reported would be expected by chance less than once in 10,000 times if the model were true.  

In spite of this rebuttal, Fisher was surprisingly polite to Mendel. For example, in telling that Mendel 

omitted details, Fisher wrote, “Mendel was an experienced and successful teacher, and might well have 

adopted a style of presentation suitable for the lecture-room without feeling under any obligation to 

complete his story by unessential details” (p.119). While discussing how Mendel lied about his data, 

Fisher wrote, “he (Mendel) is taking excessive and unnecessary liberties with the facts” (p.120). To 

explain why Mendel was wrong about his data, Fisher wrote, “It remains a possibility among others that 

Mendel was deceived by some assistant who knew too well what was expected” (p.132). 

This doubt standard was due to the fact that Fisher had adopted the Mendelian genetic view. To be 

specific, one of Fisher’s career goals is to synthesize biostatistics, Mendelism, and Darwinism (Howie, 

2002; Provine, 1971). In late 19th century, Charles Darwin proposed that natural selection, in terms of 

survival for the fittest, is a driving force of evolution. Francis Galton, a cousin of Darwin, was skeptical to 

the selection thesis. Galton discovered a statistical phenomenon called regression to the mean, which is 

the precursor of regression analysis. According to regression to the mean, in a population whose general 

trait remains constant over a period of generations, each trait exhibits some small changes. However, this 

change does not go on forever and eventually the trait of offspring would approximate that of the 

ancestors. For example, although we expect that tall parents give birth to tall children, we will not see a 

super-race consisting of giants after ten generations, because the height of offspring from tall people 

would regress toward the mean height of the population. According to Darwinism, small improvement in 

a trait across generations and the natural selection of keeping this enhanced trait make evolution possible, 

but Galton argued that the regression effect counter-balance the selection effect (Gillham, 2001)..  
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The central question of evolution is whether variation of a trait is inheritable. In late 19th century 

Mendel gave a definite answer by introducing an elementary form of genetic theory. Mendel’s theory was 

forgotten for a long while but it was re-discovered by de Vries in 1900. In contrast to the original 

Darwin’s position that evolution is a result of accumulated small changes of traits, biologists who 

supported Mendel’s genetics suggested the otherwise: evolution is driven by mutation and thus evolution 

is discontinuous in nature. By the end of 19th century and early 20th century, two opposing schools of 

thoughts were developed, namely, biometricians and Mendelians. Although Galton rejected the idea of 

small changes in trait as an evolutionary force, he was credited as the pioneer of biometrics for his 

contribution of statistical methods to the topic of biological evolution.  

Different approaches taken by Fisher and Pearson in Mendelism 

One of the most vocal figures in the biometrics camp is Karl Pearson, the inventor of Product 

Moment Correlation Coefficient. By computing the correlation coefficients of physical traits among 

relatives sampled from human populations, Pearson concluded that there is no evidence that the variance 

of height among humans could be explained by heredity, and thus the correlational studies contradicted 

the Mendelian scheme of inheritance. 

Fisher bluntly rejected Pearson’s assertion by re-interpreting Pearson’s data. Based on the same data 

set collected by Pearson for denying Mendelism, Fisher demonstrated that the hypothesis of cumulative 

Mendelian factors seems to fit the data very well. By re-formulating statistical procedures and 

probabilistic inferences, Fisher concluded that heritable changes in the Mendelian sense could be very 

small and evolution in the Darwinian sense could be very slow, and these subtle differences could be 

detected by Fisher’s version of biometrics.  

Their clash came to a crescendo in 1918 when Pearson, who served as a reviewer of the journal of 

Royal Society, rejected a paper submitted by Fisher regarding Mendelism and Darwinism. Fisher blamed 

the rejection on the paper being sent to “a mathematician who knew no biology” (cited in Morrison, 

2002). With regard to the dispute on Mendelism and biometrics, several scholars explained how Fisher 

and Pearson differed in various aspects. For example, Norton (1975) argued that as a positivist, Pearson 
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downplayed the role of causation in research. Instead, correlation plays a more central role in Pearson’s 

formulation of theory. To be specific, if variables A and B are correlated, it does not necessarily imply 

that A causes B or vice versa. In Pearson’s view, the ultimate essence of biological knowledge is 

statistical and there is no room for causal factors. The goa l of statistical knowledge is descriptive, but not 

explanation. However, Fisher, as the inventor of randomized experimental design, did not reject the 

possibility of causal inferences. In addition, Morrison (2002) pointed out that Pearson did not regard 

knowledge as absolute truth and hence the end product of statistical analysis is conceptual modeling 

which serves as a approximation to the phenomenon that we observed. This view is in a head to head 

collision with the dichotomous nature of the Fisherian approach. Further, Fisher were disinterested in 

individualistic information, but asserted that biological inferences should be made with reference to 

indefinitely large number of Mendelism characteristics. On the other hand, Pearson accepted that using 

large but finite populations is a cornerstone of biometric methods, but rejected the notion of infinite 

populations.  

Eugenics as a social fashion 

Fisher’s synthesis of Mendelism, Darwinism, and biometrics is tied to the fashion of eugenics, a 

variant of Mendelism, in the late 19th and early 20th centuries (Brenner-Golomb, 1993; Giegerenzer et al, 

1989). During that period of time Westerners were highly interested in eugenics--applied genetics. Many 

research endeavors were devoted to explaining why Western civilizations were superior to others (e.g., 

research on intelligence) and how they could preserve their advanced civilizations. According to 

Darwinism, the fittest species are the strongest ones who could reproduce more descendants. This notion 

seems to fit the social atmosphere very well. To be explicit, Darwinism could rationalize the idea that the 

West is stronger and thus fitter; it has the “mandate destiny” before the nature has selected the superior. 

However, the dispute between biometricians and Mendelians, as well as the dissent voice of Karl Pearson, 

were considered a hindrance to the advance of Darwinism. Fisher’s research provided an answer to a 

question that was seriously concerned by Western policy makers and scholars. Under the Mendelian-

Darwinian-Biometrician synthesis, Fisher suggested that the only way to ensure improvement of the 
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nation was to increase the reproduction of high-quality people (Brenner-Golomb, 1993). Thus, Fisher’s 

insistence on certainty is partly motivated by his enthusiasm in promoting certain political/social policies 

and his faith in the Mendelian-Darwinian-Biometrician synthesis. 

It is not the author’s intention to discredit Fisher or downplay the Fisherian methodology by 

illustrating his obsessive quest for certainty and his agenda in Eugenics. Rather, this background 

information can help us to understand the limitations of the Fisherian school. For psychological and 

educational researchers, it is legitimate to ask whether a methodology aimed at achieving certainty in 

biology for partly serving specific political agenda (eugenics) is fully applicable to social sciences in 

general.  

Difference between Fisher and Pearson in statistical testing and probabilistic inferences 

It is important to keep in mind that under the synthesis of Mendelism, Darwinism, and Biometrics, 

the goals of Fisher was to develop a quantitative method, which is sensitive to the slowness of selection 

and the smallness of Mendelian changes, yet it could lead to a conclusion with a high degree of certainty 

or even a dichotomous answer, such as the clear-cut variance explained in genetics. With this background 

information the differences between R. A. Fisher and E. S. Pearson (the son of Karl Pearson) in statistical 

testing and probabilistic inferences will be more understandable. 

The current form of hypothesis testing is a fusion of two schools of thought: Fisher and 

Neyman/Pearson (Lehmann, 1993). Due to space constraints, the following discussion will focus on R. A. 

Fisher and E. S. Pearson only. When Fisher introduced his methodology, there was only one hypothesis: 

Null (i.e., there is no difference between the control group and the treatment group). Following this 

strategy, the only possible options are whether to reject the null hypothesis or not. Put simply, the 

conclusion is an either/or answer. To Pearson, testing a single hypothesis that only yields a simple and 

dichotomous answer is inadequate. Later Pearson introduced the concept of alternate hypothesis (i.e., 

there is a difference between the control group and the treatment group). However, the alternate 

hypothesis is unknown and thereby could be anything (e.g. a very huge difference, a large difference, a 
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medium difference, a small difference, a very small difference, etc.). With the presence of alternatives, 

the conclusion is no longer dichotomous.  

Further differences between the two schools can be found in the use of cut-off Alpha level. While 

Fisher advocated .05 as the standard cut-off Alpha level, Pearson (1933) did not recommend a standard 

level but suggested instead that researchers look for a balance between Type I and Type II errors. 

Statistical power is also taken into consideration for computing probabilities and statistics. Type I, Type II 

errors, Alpha, and power will be discussed in the section entitled “Neyman/Pearson model.” 

 

Figure 1.  Fusion of Fisher and Pearson models 

 

 

Fisherian model 

In Figure 1, the y-axis is the frequency and the x-axis is the standardized score with the mean as zero 

and the standard deviation as one. The curve on the left hand side is the null distribution introduced by 

Fisher. It is important to note that this is the sampling distribution, which appears in theory only. It is 

derived from neither the population nor the sample. In theory, if there is no difference between the control 

and treatment groups in the population, the subtraction result is zero. However, there are always some 

sampling fluctuations due to measurement errors and other factors. In a thought experiment, if many 

samples are drawn from the same population, the difference is not exactly zero all the time. On some 

occasions it is above zero, and in some cases it is below zero. According to the Central Limit Theorem, 
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when these scores are plotted, a bell-shaped distribution is formed regardless of the shape of the 

population distribution (Yu, Anthony, & Behrens, 1995). In the Fisherian methodology, a pre-determined 

Alpha level (red line) is set to guide the researcher in making a judgment about the observed sample. 

After the statistical attributes of the observed sample are found, the sample is compared against this 

theoretical sampling distribution. If the sample is located in the right hand side of the Alpha level, the 

data are said to be extremely rare, and thus the null hypothesis is rejected. Therefore, the region in the 

right hand side of the Alpha level is called the “region of rejection.”  

Pearson model 

Pearson enriched the methodology by introducing the concepts of alternate hypothesis, power, Type I 

and Type II errors (Beta).  According to Pearson, it is not helpful to conclude that either there is no 

difference or some difference. If the null hypothesis is false, what is the alternative? Then development of 

Pearson’s notion of alternate distributions may be partly tied to his father’s disagreement with Galton on 

the nature of biological data. Galton believed that all biological data are normally distributed and 

variations should be confined within certain parameters. As mentioned before, Galton believed in 

regression to the mean, in which every naturally occurring variable has a fixed mean and all values of the 

variable should tend to scatter around the mean. On the other hand, Karl Pearson held a more open-ended 

view of distributions— the world should have more than one type of distribution. Data could take on a 

variety of shape, which could be skewed, asymmetrical, flat, J-shaped, U-shaped, and many others 

(Magnello, 1996).  

Besides providing an alternate hypothesis, E. S. Pearson also changed the concept of probability from 

static and single-faceted to dynamic and multi-faceted. If the difference between the control and the 

treatment groups is small, it is possible that the researcher is unable to detect the difference when indeed 

the null hypothesis is false. This is called a Type II error, also known as “Beta” or “miss.” On the contrary, 

the researcher may also reject the null hypothesis when in fact there is no difference. In this case, the 

researcher makes a Type I error, also known as “false alarm.”  
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In the frequentist approach of E. S. Pearson, the validity of a test procedure is tied to the Type I error 

rate; a valid test should give an actual Type I error rate equal to the claimed Type I error rate. If the 

chosen Alpha cut-off is 0.05 but indeed the actual Type I error rate is 0.5, then the proclaimed conclusion 

is ten times more likely to be erroneous. Today tremendous research endeavors have been committed to 

Monte Carlo simulations and the development of other procedures for controlling the Type I error rate. It 

is not unusual that years of research efforts are made to reduce the Type I error rate by just .005. Behrens 

and Yu (2003) mocked it as the “neurosis of Type I error.” They argued that error detection should focus 

on the anomaly of the data.  

Under the frequentist logic of Pearson, several other probability concepts are introduced: Power, 

which is associated with the alternate hypothesis, is the probability that the null hypothesis is correctly 

rejected (the blue area in Figure 1), whereas Beta is the probability of Type II error (the green area). In 

this dynamic model, power is a function of sample size, Alpha level, and the supposed mean difference 

between the two groups, which is also known as “effect size.” This configuration provides researchers a 

more versatile tool to conduct experiments and interpret probabilities. For more information on the 

relationships among null distribution, alternate distribution, power, Beta, Alpha level, effect size, and 

sample size, please view an animated illustration developed by Yu and Behrens (1995): 

http://seamonkey.ed.asu.edu/~alex/multimedia/power.html 

Philosophical shortcomings 

Dichotomous character. There are several philosophical shortcomings in this integrated probability 

model. One of the problems is that the statistical result yielded from a testing is interpreted as a 

dichotomous answer: Either accept the hypothesis or reject the hypothesis. However, a dichotomous 

answer contradicts the very definition of probabilistic  inference, which indicates uncertainty. In an 

attempt to amend this problem, Pearson (1955) admitted that the terms "acceptance" and "rejection" in 

statistical conclusions, which carry a connotation of absolute certainty, were unfortunately chosen. Rao's 

(1992) assessment of Fisher's work is helpful to clarify several misconceptions of dichotomous decisions 

in statistical testing:  
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The decision (reject/not reject the null) is based on the logical disjunction …  Such a prescription 

was, perhaps, necessary at a time when statistical concepts were not fully understood and the 

exact level of significance attained by a test statistic could not be calculated due to the lack of 

computational power… Fisher gives a limited role to tests of significance in statistical inference, 

only useful in situations where alternative hypotheses are not specified… Fisher's emphasis on 

testing of null hypotheses in his earlier writings has probably misled the statistical practitioners in 

the interpretation of significance tests in research work (p.46) 

Rao is entirely correct in his assessment of Fisher’s work. In his later career, Fisher started to realize 

the weaknesses of his methodology. First, he disapproved of the use of any standard Alpha level, though 

he once supported it. He wrote, “No scientific worker has a fixed level of significance from year to year, 

and in all circumstances, he rejects hypothesis; he rather gives his mind to each particular case in the light 

of his evidence and ideas” (cited in Upton, 1992, p. 397). However, Fisher’s statement was a prescription 

about what scientists ought to do, not a description of what scientists did. Second, Fisher was opposed to 

handing over the judgment about whether or not to accept a hypothesis to an automated test procedure 

(cited in Mulaik, Raju, & Harshman, 1997, pp.78-79). Further, Fisher (1956) emphasized that the purpose 

of research is to gain a better understanding of the experimental material and of the problem it presents.  

Unfortunately, up to the present day most researchers still adopt a conventional Alpha cut-off and run 

statistical tests in a mechanical manner; most researchers could not distinguish Fisher’s early view on 

probability and statistics from his later view. As a counter-measure, today some researchers de-emphasize 

the dichotomous character of hypothesis testing by asserting that the proper language of concluding a 

hypothesis testing should be “failed to reject the hypothesis” rather than “accepting the hypothesis” or 

“proving the hypothesis.” (Cohen, 1990; Parkhurst, 1985, 1990)  In a similar vein, Lehmann (1993) gave 

researchers several practical suggestions: 

Should this (the reporting of the conclusions of the analysis) consist merely of a statement of 

significance or nonsignificance at a given level, or should a p value be reported? The original 

reason for fixed, standardized levels? unavailability of more detailed tables? no longer applies, 
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and in any case reporting the p value provides more information. On the other hand, definite 

decisions or conclusions are often required. Additionally, in view of the enormously widespread 

use of testing at many different levels of sophistication, some statisticians (and journal editors) 

see an advantage in standardization; fortunately, this is a case where you can have your cake and 

eat it too. One should routinely report the p value and, where desired, combine this with a 

statement on significance at any stated level (p.1247). 

Theoretical reference class. Further, determining the proper reference class is problematic. As 

illustrated in Figure 1, the sampling distribution is conceptualized through a thought experiment. We did 

not repeatedly sample the population. How could we know which distribution (reference class) should be 

used to compare against the data? The well-known Behrens-Fisher problem states the difficulty of 

estimation when the population variance is unknown. In this case, when an inference from sample to a 

population is made, strong assumptions must be imposed on both sampling distributions and samples (Yu, 

2002). 

Degree of confirmation. Another major problem with the Fisherian school, in Carnap (1950)’s term, 

is that the statistical result does not add anything to the degree of confirmation. First, in theory the 

sampling distribution is defined in the long run; the aim of hypothesis testing is to find out the probability 

that the sample is observed in the long run given that the null hypothesis is true. The controversy is: What 

is the long run? In theory the so-called “long run” could be infinite. Philosophers can easily cite the 

Humean challenge that nothing is conclusive in the long run because events occurring in the future may 

not resemble those in the past. Second, researchers are interested in knowing whether the theory is right 

given the evidence (data). However, comparing the data with the reference class can only tell us, given 

that the hypothesis is true, how likely we are to obtain the observed sample (evidence) in the long run. 

This is contrary to what other researchers want to know. In this case, it is doubtful whether the statistical 

result could add anything to the degree of confirmation.  

Strong assumptions. On one hand it is true that the Central Limit Theorem secures the normality of 

the sampling distribution, no matter if the population has a skewed or a normal distribution. On the other 
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hand, however, in many statistical tests the sample that we observed must still confirm to the normality 

assumption in order to make a valid inference. However, in reality data always departs from normality to 

certain degree. In this case, the inferential link between the sample, the theoretical sampling distribution, 

and the population is indeed very weak.  

It is interesting that on one hand Fisher considered his probability theory as objective, but on the 

other hand, choosing remedies when parametric assumptions such as normality are violated is subjective. 

For example, when extreme scores affect the normality, Winsor suggested pulling the outliers toward the 

center because he believed that all observed distributions are Gaussian (normal) in the middle. Some 

other statisticians objected to the Winsorizing approach and recommended assigning different weights to 

outliers based upon their distance from the center. Nonetheless, Cliff was opposed to weighting because 

he insisted on the principle of one observation, one vote (Yu, 2002). The central question is: How should 

we treat the sample in order to establish an inferential link among the sample, the sampling distribution, 

and the population? No matter how mathematical the winsorizing and weighting methods are, obviously 

they are not derived from self-evidential axioms.  

Synthesis 

With the increasing doubt of use of Fisherian/Neyman/Pearson hypothesis testing, several 

alternatives, such as effect size, exploratory data analysis, Bayesianism, and resampling methods have 

been proposed. Besides exploring alternate methodologies, “reforming” the Fisherian approach by 

blending divergent views of theories of probability inferences may be another viable alternative. In the 

past integrating Mendelism, Darwinsim, and Biometrics, as well as fusing Fisher, Neyman, and Pearson 

theories demonstrated that synthesis is possible even though apparently certain models seem to be 

incompatible. To be explicit, to researchers the question of methodology may not be an “either-or” 

question.  

Substantive efforts have been devoted to attempts to remediate the Balkanization of probability. For 

example, Berger (2001) boldly synthesized Fisher, Jeffreys and Neyman’s methodologies into a unified 

approach. In the Bayesian school, probability is conditional, while the concept “conditioning” is virtually 
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absent from the frequentist school. Nevertheless, Berger extracted components from the three schools to 

formulate “conditional frequentist testing.” However, what Berger did is methodological integration 

rather than philosophical synthesis. Berger admitted that his work was “motivated by the view that 

professional agreement on statistical philosophy is not on the immediate horizon, but this should not stop 

us from agreeing on methodology.” (p.4) Philosophers may find this a-philosophical orientation 

unacceptable. Moreover, as a Bayesian, Berger (2000) asserted that the synthesis must be based upon the 

Bayesian theme because probability and statistics are about measuring uncertainty; the frequentist 

approach is useful to objectify the Bayesian estimation.  Needless to say, this synthesis may not be 

welcomed by frequentists. 

Pawitan (2000, 2001) also attempted to synthesize the frequentist and the Bayesian approaches . 

Unlike Berger, Pawitan placed the emphasis on the Fisherian school. Although Pawitan also viewed 

probability as a measure of uncertainty, he accepted a “ladder of uncertainty,” a Fisherian idea introdcued 

in his last book Statistical  methods and scientific inference (1956): Whenever possible, the researcher 

should base inference on probability statements, otherwise, it should be based on the likelihood. With the 

ladder of uncertainty as the foundation, Pawitan proposed the likelihood approach: Uncertainty can be 

expressed by both likelihood and probability, where likelihood is a weaker measure of uncertainty and 

probability allows objective verification in terms of long term frequencies. Pawitan argued that the 

likeihood approach is a compromise between Bayesianism and frequentism because this approach carries 

features from both factions.  

Further, Pawitan developed the empirical likelihood approach by merging the likelihood and the 

bootstrap, which is a resampling method. In bootstrap, the sample is duplicated many times and treated as 

a virtual population. Then samples are drawn from this virtual population to construct an empirical 

sampling distribution.  Like randomization exact test, the rationale of bootstrap is to counteract the 

theoretical aspect of the classical Fisherian approach by introducig empirical elements into the inference 

process. As I have shown, the classical Fisherian approach imposes several assumptions, such as 
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normality and equal variances, on the sample. In reality, researchers always obtain “messy” data. Pawitan 

argued that the empirical likelihood approach could handle irregular data better than the classical one.  

However, it seems that like Berger, Pawitan de -emphasized the role of philosophy. He argued that 

with the advent of Monte Carlo simulations performed in high-power computers, the Bayesian approach 

“can now be justified almost by the utilitarian principle alone, rather than by the orthodox philosophical 

reasons.” (p.5) 

Discussion 

Probability is a complicated and confusing concept. Not only did Fisher, Jeffreys, Pearson not agree 

with each other, but also in the earlier and later parts of his career, Fisher had different opinions on the 

same issues, such as use of a pre-determined Alpha level,. The synthesis between Fisher and Pearson 

amended several shortcomings in the Fisherian probability model, such as the introduction of Type I error, 

Type II error, and power. Nonetheless, some researchers are doubtful that over-emphasis on reducing 

inflated Type I errors is justified. 

Although Fisher employed rigorous mathematics to defend his view of probability in terms of 

hypothetical distributions and promoted his approach as objective science as opposed to subjective 

Bayesianism, his orientation is driven by his faith in Darwinism and eugenics. Indeed, various forceful 

assertions on statistics and probability theories made by Winsor, Cliff, and many others seem to be 

nothing more than professional opinions. As Berger said, agreement on statistical philosophy is not on the 

immediate horizon; current integration occurs on the methodological/computational level only. Thus, 

dialogues and collaborations between philosophers and statisticians are essential to the synthesis on the 

philosophical level.  
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