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Abstract

Causdity isan intriguing but controversd topic in philosophy, datistics, aswell as
educational and psychological research. By supporting Causal Markov Condition and Faithfulness
Condition, Clark Glymour attempted to draw causal inferences from structural equation modeling.
According to Glymour, in order to make causd interpretation of non-experimentd data, the
researcher must have some type of manipulation, rather than conditioning, of variables. The
Causal Markov Condition and its sister, the common cause principle, provide the assumptions to
dructure relationships amnong variables in the path modd and to load different variablesinto
common latent congructsin the factor mode . In addition, the Faithfulness Condition rules out
those models in which statistical independence relations follow as aresult of specia coincidences
among the parameter values. The arguments againgt these assumptions by Nancy Cartwright as
well asthose for these assumptions by James Woodward will be evaluated in this paper.
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Assumptions and I nterventions of Probabilistic Causal M odels
Chong Ho Yu, Ph.D.

Introduction

Cauddity isan intriguing but controversid topic in philosophy, satistics, and the socid
sciences. Since the introduction of Pearson’ s Product Moment Correation Coefficient, many
statisticians and social scientists have been conducting research based upon association. For along
time the question about whether quantitative methodologies could lead us to causal inferences has
remained unsettled.

There are some sound reasons to justify why people are skeptical toward causal inferences
yielded by statistical models. Y ule (1926) pointed out that sometimes we could get
nonsense- correl ations between time-series. For ingtance, if you plot GNP, educationd leve, or
anything againg time, you may see some significant correlation. On the other hand, even though
bad research studies exig, it does not mean that we should abandon the endeavors dtogether. In
recent years, both Glymour and his CMU group (Glymour, 1982, 1983; Glymour, Scheines,

Spirtes, & Kely, 1987; Glymour, 1999; Glymour & Cooper, 1999) have been devoting efforts to
the TETRAD project in an attempt to affirm causal inferences based upon correlationd
information and non-experimenta data. Not surprisingly, many scholars have voiced either their
support or objections to Glymour et d.’ s gpproach.

Interestingly enough, numbers per se could not determine whether causd information
could be extracted from the data or the mathematica model. Basically, both proponents and
opponents of using datistica gpproach in causdlity utilize the same numeric information. For
instance, structural equation modeling, the causal model endorsed by Glymour and Pearl (2000), is
composed of a measurement model and a path model. In a measurement model, Pearson’ s Product
Moment Correlation Coefficient, which is assocationa in essence and a-causd in origin, is used
for factor analysis. In addition, today the widely used hypothesis testing by statisticians and socia
scientigtsisafusion of Fisher, Pearson, and Neyman' s modds. As mentioned before, Pearson
accepted association only and de-emphasized causdity. Regardless of whether you bdievein
causdity or not, you may gtill conduct hypothess testing, run Pearson’ s Corrdation Coefficient,
and/or do factor analys's, unless you totdly reject quantitative methods.

If numbers and mathematicsalone could not settle the debate of causality, then where could
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we go to investigate the problem? | believe that the problem is concerned with the philosophica
agpects, such as the unproved assumptions of Satistica moddling. In this paper, two maor
assumptions of Glymour’ s TETRAD will be discussed. The arguments againg these assumptions
by Nancy Cartwright as well asthose for these assumptions by James Woodward will be
evauated.
Conditioning

As mentioned in the beginning, when researchers compute the association of observational
(norn-experimental) data, sometime the relationships might seem to be nonsense. In order to gain
more ingghts, careful Satigticians might partition the data by grouping variables or other lurking
variables. Thiskind of activity can be considered “ conditioning.” For example, in a research study
regarding the relationship between the birth weight of babies and the age of mothers (an example
dataset included in DataDesk, Data Description, Inc., 1999), the regression dope using thefull
dataset (see the black line and the blue bar in Figure 1) indiciates that as the age of mothers
increases, the birth weight of babies increases. This relationship is counter-intutitive because
usudly as the mother gets older and older, the chance to give birth to a hedthy baby islower and
lower.

Figure 1. Relationships among birth weight, age of mother, and race
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However, when the dataset is partitioned by a grouping variable, race, the issue becomes more
complicated. The pogtive relationship between birth weight and age is true among whites. For
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blacks, the relationship is negative (see the red line and the red bar in Figure 1), while for other
ethnic groups the regression dope isdmogt flat, and therefore no sgnificant rdaionship is
implied. Please kegp in mind that this study is non-experimentd for the researcher did not
manipulate age, race, and birth. Conditioning this kind of observationa data aways faces this
problem: No broad generdization about relationships could be firmly made because further
conditioning and partitioning may reverse the relationship discovered in the aggregate dataset.

I ntervention and Manipulation

According to Meek and Glymour (1994), computing probabilities by conditioning on an
event isvery different from computing probabilities upon an intervention to bring about that event.
While talking about intervention, readers may get an impression that Glymour was talking about
conducting experiments, in which human interventions are imposed on various scenarios. |ndeed,
in Glymour’ sview, intervention does not necessarily happen at the data collection stage. At the
dataanalysis stage, data manipul ation and model building can also be viewed as adifferent kind of
intervention.

Meek and Glymour compared the Fisherian tradition with their own work to show the
continuity between both. Fisher’ s design of experiment could achieve two objectives. (1) To
ensure that trestment assgnment has no common causes and are independent if trestment has no
effect on outcome; (2) to determine a definite joint probability distribution for treestment and
outcome under the assumption of no effect (null hypothesis). On one hand, Fisher’ s design of
experiment requires randomization of group assgnment to rule out common causes. On the other
hand, Meek and Glymour asserted that causal claims entall claims about intervention or
manipulation. If the research study is not experimentdl, then how could the logic of the Fisherian
school be applied to causal inferences of nornexperimenta data? Spirtes, Glymour & Scheines
(1993) proposed that two assumptions could be employed to bridge the gap between the causal
structure and the non-experimental data: the Causal Markov Condition (CMC) and the
Faithfulness Condition (FC). In their view, equipped with these two assumptions, researchers
could draw causdl inferences as if intervention or manipulation had been made to the data.

Causal Markov Condition
In acausd modd, joint probaility distribution over the variables must satis'y CMC
(Druzdzel & Glymour, 1995). In CMC, each variable is probabiligticaly independent from its
non-descendants, conditiona on its parents. In Figure 2, suppose that X; and X, are
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probabilitically independent from each other, and they both contribute to the effect of X3. X4 is
independent from X3 and X», conditional on Xs. If X; and X, were not probabiligticaly

independent, the model would be problematic. For example, in aregresson modd when

independent variables are highly correlated, the problem of multicollinearity exists and the model
isnot interpretable. The Causa Markov Condition is the assumption of the path modd, in which
relationships among variables are structured. The path modd is one of the components of the

structura equation model adopted by causationigts.

The Causa Markov Condition also implies the common cause principle proposed by
Reichenbach (1956) and advocated by Glymour and his colleagues (Glymour, 1982; Glymour,
Scheines, Spirtes, & Kelly, 1987). According to the common cause principle, if a system of
variables stisfies the Markov Condition, and they have a high degree of association, then there
exigs alatent condruct (factor) causing them. The common cause principle is the underlying
assumption of the factor model, which is aso a building block of the structura equation mode!.

Figure 2. Example of the Causal Markov Condition
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According to the faithfulness condition, Statistical congtraints arise from sructure, not

Faithfulness Condition

coincidence. Asthe name implies, FC supposes that probabilistic dependencies will faithfully
reved causa connections. In other words, al independence and conditiona independence
relations among observed variables are consegquences of the CMC applied to the true causa
structure. For example, aresearch study (cited in Glymour, 1987) indicates that providing
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financid aid to released prisoners did not reduce recidivism. An dternate explanation isthet free
money discourages employment, and unemployment has a pogtive effect on recidivism while
finarcial aid tends to lower recidivism. As aresult, these two effects cancel out each other (Figure

3). However, the faithfulness condition rules out this explanation.

Figure 3. Example of the Faithfulness Condition.
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Manipulation Theorem

Meek and Glymour (1994) proposed that when probabilities satisty CMC and FC, and
when the intervention isided in the sense of manipulation, casud inferences are legitimate. This
notion is termed the “ manipulation theorem.” To be speific, given an externd intervention on a
variable A in acausd model, the researcher can derive the posterior probability distribution over
the entire modd by smply modifying the conditiond probability digribution of A. If this
intervention is strong enough to set A to a specific value, the researcher can view the intervention
asthe only cause of A. Nothing else in the mode needs to be modified, as the causal Structure of
the system remains unchanged.

To implement this theorem, Glymour and his CMU group developed a software-plugin
named TETRAD to manipulate/intervene on structura equation models by searching al possible
paths among variables (manipulation by “what-if"). It isimportant to note that TETRAD is not
something entirely new. Popular structural equation modeling software gpplications such as
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LISREL and EQS have their own automatic path searching algorithms. Nevertheless, Ting (1998)
found that the hit rates (the success rates of uncovering theright causal structure) of TETRAD’ s
automatic search procedure reach 95% for large samples (n=2000) and 52% for small samples
(n=200), which are far higher than those offered by LISREL and EQS.

Cartwright’ sArgumentsagaing Glymour’ sldeas

Empiricig view: No causes in, no causes out

Many philosophers are opposed to the preceding idea. Due to space constraints, this paper
will concentrate on Nancy Cartwight only. Cartwright (1999) emphasized the point of * no causes
in, no causes out.” (p. 39) To be specific, there is no way to get casual information from equations
and associations. New causal knowledge must be built only from old, empirical causal knowledge.
In other words, the empiricis’ s rule embraced by Cartwright isthat the rlevant data are the data
that will fix the truth or falsity of the hypothesis, given the other known facts. Glymour et d.
included al possible combinations of variables and paths in the moded and then irrelevant ones
were eliminated. Cartwright questioned that if relevant variables and genuine causes are not
included at the beginning, then this elimination approach is useless. For these reasons, Cartwright
grongly criticized Glymour et d.” stheory:
“Because Glymour, Scheines, Kelly, and Spirtes employ the hypothetico-deductive method,
they must proceed in the opposite order. Their basic strategy for judging among modelsis
two-staged: firgt ligt al the rlevant rdations that hold in data, then scan the structuresto
see which accounts for the greatest number of these rdations in the smplest way. That
means that they need to find some specific sat of reations that will be rlevant for every
modd. But, from the empiricist point of view, no such thing exiss” (p.78)
In questioning the gpplicability of CMC, Cartwright (1999) used a classica exampleto
argue that researchers may take the risk of confusing a co-symptom with acause: In R.A. Fisher’ s
opinion, smoking does not cause lung cancer. Rather, smoking and lung cancer are caused by a
common cause: aspecid gene that increases the tendency to smoke and to get cancer. Not
surprisngly, Cartwright asserted that to investigate a hypothesis like this, one must conduct a
randomized experiment ingtead of counting on CMC and mathematica intervention of
nor-experimental data.
Actually, Glymour and his CMU group do not rely on equations alone. Rather, they still use
empirical data though the data are not non-experimentd. It ssemsthat in Cartwright’ sview,
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non-experimenta data are not “ empirica” enough. Fird, it isawel-known fact that most dataiin
astronomy and geology are not experimentd, yet many conclusonsin these disciplines are
qudified to be causal inferences. Second, according to the abductive logic, new knowledge does
not necessarily arise from old, empirica knowledge (Y u, Behrens, & Ohlund, under review).
Nonetheless, these popular arguments will not be repeated here. Instead, the discussion will be
focus on the nature of empirica data

A smple definition of empiricd datais data that are collected through sensory input and
could be verified by sensory channels or logica means. When observationd data of various
variables are measured and computed, are their statistical properties empirical? Assuming that the
datavalues of these variablesindicate a high degree of internal consistency and a single dimension,
and thus these variables satisfy the common cause principle and are collapsed into a single factor,
can we regard properties such as*“ interna consstency” (in psychometric sense, not inlogicd
sense) and “ unidimensionaity” empirica? My answer is“yes’ because they are absolutely
verifiable

Further, assume that | took an 1Q test and achieved a score of 200; is the psychometric
attribute “ high intelligence” empirical? According to strict empiricists, the answer is*“no” because
the score is not obtained by repeated experiments. Gaining a high score in one single test could be
due to pure luck. Right before the test is administered to me, | might take Ginkgo Biloba or read a
book carrying 1Q test items that are Smilar to the test. To estimate my 1Q score in ascientific
manner, | haveto retake the sametest several times and to demonstrate a high degree of stability of
test score over time. However, in many experimentd studies subjects are tested or measured just
once. Intheory, the subjects memory about the test should be wiped out so that no carry over effect
is present when subjects are retested. Needless to say, it isimpossible and unethicd to erase
people s memory. Indeed, rdiability of many experimenta scoresis established by mathematical
modeling. To be specific, by thought experiment the true score mode assumesthat if the same
person takes the same test over and over, error scores would scatter around the true score, and the
observed score is the composite of the true score and the error score. Hence, mathematical models
are applied to minimize the error score (Y u, 2001). Please keep in mind that “ manipulation” of the
test scoreis carried out during the data andysis.

Last but not least, it is doubtful whether objecting that amodel may |eave out some genuine
causes or relevant variables and so rejecting the method could help scientific progress at all. First,
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who could affirm that all relevant variables are included in the model except the omnipotent God?
Second, isit redly necessarily to include dl relevant variables? In defense of his stlandpoint,
Glymour (1999) wrote,
“ Cartwright is perhaps correct that the whole truth about anything is very complex; but,
quite properly, science is seldom interested in the whole truth, or aided by insistence upon it.
In my view, an inquiry that correctly found the causes of most of the variationsin a socid
phenomenon and neglected small causes would be atriumph.” (p.59)
Causad Markov Condition, probabiligtic causation, and Smpson’ s paradox
In addition, while Glymour et d. based their causa modeling on probakility, Cartwright
(1999) believed that causd laws cannot be reduced to probabilistic laws and thus CMC is

guestionable. According to Cartwright, “ probabilities may be a guide to causes, but they are like a
symptom of a disease: there is no generd formulato get from symptom to disease’ (p.243).
Nevertheless, she did not reject CM C atogether. Rather she pointed out that thereis not auniversal
condition that can be imposed on al causal structures. By citing the Simpson’ s Paradox (1951), in
which the conclusion drawn from the aggregate data is contradicted by the conclusion drawn from
the contingency table based upon the same data, Cartwight (1983, 1999b) asserted that universal

causdl inferences are mideading. The so-cdled causd reationship is dways confined to a

particular population. For instance, in England once a 20-year follow-up study was conducted to
examine the surviva rate and death rate of smokers and nortsmokers. The result implied a

ggnificant pogtive effect of smoking because only 24% of smokers died compared to 31% of
non-smokers. However, when the data were broken down by age group in a contingency table, it

was found that there were more older people in the non-smoker group (Appleton & French, 1996).
Based on the Smpson’ s Paradox, Dupre and Cartwright (1988) suggested that there are only
probabilistic capacities, but no probabilistic causd laws at dl. In Cartwright’ sview, causd

explanation depends on the stability of capacities. In contrast to probabilistic causation thet is

relaive to grouping variables, capacities remain the same when removed from the context in

which they are measured.

Inconsistent results happen al thetime. If we reject probabilistic causation becausethereis
inconsistency, many research projects would become impossible. Asamatter of fact, the discovery
of Simpson’ s paradox does not discourage researchers from drawing generdizations. Instead,
different techniques have been employed by satisticians and socid scientists to counteract the
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potentid threat of Simpson’ s Paradox. For example, by smulation, Hsu (1989) found that when

the sample size is small, randomization tends to make groups become nonequivalent and increase
the possihility of Simpson's Paradox. Thus, after randomization with asmal sample size,

researchers are encouraged to check the group characteristics on different dimensions (e.g. race,

seX, age, ...€tc.), and re-assgnment of group membership is recommended if non-equivaent
groupsexist. Further, to avoid the Simpson’ s Paradox, Olkin (2000) recommended that researchers
employ meta-analysis rather than pooling. In pooling, data sets are first combined and then groups
are compared. As aresult, the conclusion drawn from the combined data set could be mideading,

while ingghts about the research question are hidden in partitioned data. On the contrary, in
meta-anayss (Glass, 1976; Glass & Smith, 1981; Hunter & Schmidt, 1990) groups in different

data sets are compared first in terms of effect size, and then the comparisons are combined to infer
agenerdization (Table 1). In other words, the information of partitioned datasetsis given

condderation firdt.

Table 1. Example of meta-andyss

Experimental | Control group _ Correlation
Study ID Effect sze

group mean mean coefficient
1 109 100 12 0.90
2 215 200 0.6 0.80
3 309 300 0.9 0.80
Aver 0.9 0.86

Counter-example of Faithfulness Condition: No modelsin, no causes out
Cartwright (1999a) was skeptical toward the universality of FC. In FC, it is not acceptable

to have two equaly powerful causa effects cancel out each other. Nonetheless, Cartwright gave

one counter-example: Consider the case of fiber optics. Low-loss optica fibers can carry

information at gigabits per second over along distance. But pulse broadening effects inherent to

fiber optics can also smear dataasthey travel along the cable. In this case, the same original source
emits two opposite effects that tend to cancel out each other. In order to make fiber optics useful,
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network engineers must gpply complicated engineering schemes to enhance the firgt effect and

suppress the latter simultaneoudly. Thus, Cartwright (2001) argued that the researcher must gather
the background information about the causal structure under study instead of blindly following FC
under all circumstances. Any conclusions the researcher draws about causal inferences based upon
FC can only be as secure as our models of that structure and its operation. That' s why Cartwright
ingsted on “ no modesin, no causes out” (1999, p.17).

Actualy these so-cdled * counter-examples’ can be found everywhere. Take another
networking scheme as an example: Consder Ethernet and Category 5 cabling. Ethernet follows a
bus topology, and thus any one in the network could send out any data packet at any time. Asa
result, data packets may collide with each other. Again, engineers must apply complicated
methods to make Ethernet usesble. Medicine is another example. Last year | was very sick for a
long time in spite of visting dinics over and over. Later | wastold that my illness was prolonged
because while the medicine that | took cured a certain kind of disease, it so weskened my body
and made me vulnerable to other diseases.

Nevertheless, when we examine these cases carefully, we could find that there were no
violations of FC. In the networking examples, the positive and negative effects must be exactly
equa in intensity so that when networking cables are installed, nothing would happen. But it is not
true. In thefirst case, the sgnals are indeed sent into the fiber optics but they disintegrate as they
travel alonger distance. In the second case, the Ethernet network is il functioning except that
data collisons happen dl the time. In the example of taking medicine, “feding sck,” like
“economic problem” and “ socid ill,” istoo ambiguous to be an effect. Indeed feding sck dueto
one symptom is different from feding sick due to another. In other words, the positive and
negative effects do not cancel out each other. If the government increases spending to increase the
employment rate, the inflation rate may increase, too. But it is incorrect to say that the two effects
of government spending cance out each other because “ economic problems’ Hill exis.

Further, withou the faithfulness assumption, any model could always be defensible by the
argument of “canceling-out.” When the welfare program administered to released prisonersis not
successful in reducing recidivism, it is said that both the encouraging effect and the discouraging
are at work. The same gpproach can be used to explain any failure or ineffectiveness. If adoctor
prescribes the wrong medicine to me and thus my illnessis never cured, he could aso argue that
his medicine works but the drug has a side effect to make me feel bad. A good treatment should be
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arobust one. By applying FC, researchers are forced to give a verifiable and clear-cut causa
concluson ingeed of explaining away fallure.

Woodward’ s Argumentsfor Glymour’ sldeas
Interventions

James Woodward proposed many interesting ideas that are supportive to Glymour’ s theory.

Two important aspects are his view to interventions and invariance. As most people naotice,

Glymour’ sidea of intervention is not the same as the conventiona sense. In convertiond

experiments, human intervention isimposed on different settings, and then how subjects react to

the intervention isrecorded. In Glymour’ s approach, intervention isimposed on numbers, and how
numbers reect to the intervention is evauated. But whether it isatrue “ intervention” is ill

debatable.

Woodward (2000, 2001) argued that a process or event could qudify as an intervention
even if it does not involve human action. In other words, a purely "naturd™ processinvolving no
animate beingsat all can qualify asan intervention if causal information is embedded. Thiskind of
research is often described by scientists as a“ natural experiment.” Moreover, even when
manipulations are carried out by human beings, it isthe causal features of those manipulations that
meatter for recognizing and characterizing causd relationships. For example, an intervention on
variable X with respect to a second varigble Y isacausa processthat changes X inan
appropriately exogenousway, so that if achangeinY occurs, it occursonly by virtue of the change
in X, and not as aresult of some other set of causal factors.

In experiments human intervention actually happens in the real world. In the mathematical
realm, intervention or manipulation happens in a counterfactual fashion, or in the possible worlds.
Theintervention yields answers to questions like “ what would happento Y if X; were added to the
model and the coefficient of X, were down-weighted?’ In this case, whether or not the
interventions that set the vaue of Xsand Y are carried out by human beings and whether or not
they have in fact taken place isirrdevant (Hausman & Woodward, 1999).

Following thisides, intervention in the sense of TETRAD islegitimate. Human
intervention in experiments does not create causal information or make the data ready for causal
inferences. Causa properties have dready been embedded in the subject matter and experimental
control isjust away to reved the causd information. If the data are non-experimentd, causd
characteristics are ill within the data. Mathematical intervention, by the same token, isto make
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the causal relationship more obvious, if thereisany. In TETRAD, causal structureisrepresented in
asystem of equations. When the researcher changes the variables and/or the coefficients of the
equations, he/she is changing the mechanism(s) or relationship(s) represented by it. Woodward

(1999) dtated that we can view this as amatter of intervening on the dependent variable in the

equation so that the value of that variable is now fixed by the intervention rather than by the

variables that previoudy determined its value.

Invariance

The second point made by Woodward on invarianceis also relevant to Glymour’ sidea. Itis
important to note that in Woodward' s framework, the concepts of invariance and interventions are
closdly related. For example, if Y=at+bX+eisa correct description of the causa relationship
between X and Y, by intervening the value of X, the vaue of Y should change correspondingly
within a reasonable range of data vaues. To be specific, in Woodward' sview (2001) acausd
generdization need not be universd. Rather, it could be just invariant, which meansit is stable or
robust in the sense that it would continue to hold under arelevant class of changes. Thisclam
concerning causdity is less ambitious than Cartwright’ s capacities, which amsto achieve
context-free causation. Woodward (1998) asserted that many claimsin socia sciences are made
within alimited range of circumstances. For example, interventions that change the money supply
may change the price level in some range of circumstances, but not in others. Woodward (1999)
and Hausman and Woodward (1999) gave a humorous example: If | water my plant with 1-3 liters
of water, my plant would grow. If | water the same plant with 1,000 liters of water and the plant
dies, it does not negate the statement “ water causes plantsto grow.”

This Smple argument provides a sound rationde for usng linear modding in TETRAD
(Glymour, 1987). One popular argument against linear models is that it is too ssimplified to capture
the complexity of thereal world. In many situations, relationships between variables are non-linear.
The relationship between stress and performance is a classica example. Psychologists found that
for most people, as the stress level increases, the performance level increases correspondingly (see
Figure 4). Nonetheless, the regression dope is reversed when too much pressure is imposed.

Following Woodward' s argument, if a professor assgned five term papers, Sx examinaions, and
ten presentations to her students, and as a result the whole class failed, isit right for her to say, “ It
seems that pressure does not improve performance in al Stuations. Now this causa law bresks

down!” The main point here isthat the validity of acausa mode requires invariance within a
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reasonable range of data values. Cases such as giving 1,000 liters of water to plants and six exams

to aclass must be dismissed.

Figure 4. Relationship between pressure and performance
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Conclusion

In summary, in order to make causd interpretation of nonexperimental data, the researcher
must have some type of manipulation, rather than conditioning, of variables. The Causd Markov
Condition and its Sster, the common cause principle, provide the assumptions to structure
relationships among variables in the path model and to load different variables into common latent
congtructs in the factor modd. In addition, the Faithfulness Condition rules out those modelsin
which gatistica independence relations follow as aresult of specid coincidences among the
parameter vaues. Putting dl these together, TETRAD uses dgorithms to examine dl possble
paths among variables to search for a plausible causa explanation. During this process
intervention isimposed on the data and hence causd cdlams arejudtified.

Cartwright argued for “ no causesin, no causes out,” which means without background
knowledge based upon empirical data, relevant variables and genuine causes may be omitted from
the modd. In this case, path searching and mode building by sophidticated algorithms may be
useless. The counter-arguments are that empirical data should not be narrowly defined in a
restrictive sense, and the aim of the scientific investigation is not to examine all relevant variables.
Cartwright objected to probabilistic causations and CMC by citing the Simpson’ s Paradox.

However, satistical methodology is going toward broader generdizations in spite of the threet of
the Smpson’ s paradox. Furthermore, Cartwright gave a counter-example to the faithfulness
condition and warned that FC should not be adopted without careful investigation of the
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background information. Neverthdess, regjecting FC may take the risk that any failure can be
justified by adopting the notion that two equally powerful forces cancel out each other.

Woodward stated that even with non-experimenta data, interventions are il possible
because interventions are not necessarily carried out by humans at the stage of data collection. In
data analysis, data values and equation parameters can be manipulated in a counterfactual manner.
Moreover, the idea of invariance proposed by Woodward could be used to justify the linearity
assumption of TETRAD.

Both Cartwright and Woodward made many other points rgecting or supporting TETRAD
that could not be covered by this short paper. Additionally, besides Cartwright and Woodward,
many other scholars from various disciplines, such as sociology, computer science, and
mathematics, have participated in this type of discusson. This phenomenon shows that causdlity
has become an inter-disciplinary subject matter. Even among philosophers discussion of thisissue
goes beyond pure philosophy. For example, dthough the primary role of Cartwright and
Woodward isthat of philosopher, Cartwright is versed in economics and Woodward has a
mathematical background. Fruitful results are expected when input from such awide variety of

perspectivesis integrated.
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