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ABSTRACT 

Differential item functioning (DIF), as an assessment tool, has been widely used in quantitative psychology, 
educational measurement, business management, and insurance and healthcare industries. The purpose of DIF 
analyses is to detect response differences of items in questionnaires, rating scales, or tests across different 
subgroups (e.g., gender), while controlling for ability level. There are three general procedures to examine DIF: 
generalized Mantel-Haenszel (MH), logistic regression, and item response theory (IRT). The SAS system provides 
flexible and efficient procedures for all these approaches. The goal of this paper is to demonstrate multiple ways to 
conduct DIF analyses by using different SAS procedures (PROC FREQ, LOGISTIC, GENMOD, GLIMMIX, and 
NLMIXED).  
 

INTRODUCTION 

Differential Item Functioning (DIF) has been widely used in healthcare, business management, and educational 
measurement. Assessment developers design and construct questionnaires or tests including sets of items that 
measure, for example, cognition, personality traits, or political views. DIF occurs if responders to a questionnaire or 
test item from different groups with the same overall scores have different probabilities of giving a correct or positive 
response to the item. Specifically, DIF has been recognized as a standard tool to measure significant item function 
differences across groups (e.g., gender or race) while controlling the overall scores on the trait being measured. The 
usual convention is to designate one group as the reference group (e.g., male, or white) and the others as focal 
groups (female, or African Americans, Asian Americans, etc.). The SAS system can be used to conduct multiple DIF 
analyses, conveniently and efficiently, by using current SAS procedures. It should also be pointed out that DIF 
analyses are just statistical procedures to identify items. A content review by committees of experts carefully 
examining the contents must be carried out for the identified items. The content experts need to assess whether there 
is any aspect of the item content that is irrelevant to the trait being measured but may be resulting in differential 
performance between groups. 

 
In general, there are three main DIF analysis methods: the generalized Mantel-Haenszel (MH) test (Mantel & 
Haenszel, 1959), logistic regression, and item response theory (IRT). The Mantel-Haenszel DIF statistic was 
proposed as a method for detecting DIF by Holland & Thayer (1988). It has been widely used in educational 
measurement due to its easy implementation in testing programs. However, it is usually used to detect uniform DIF 
for dichotomous items. The logistic regression procedure for DIF was introduced by Swaminathan and Rogers (1990). 
It can detect both uniform and nonuniform DIFs and can also include exogenous variables (variables besides overall 
scores that are controlled for in the analyses, such as, age) in the models. Item response theory (IRT) DIF 
procedures have received increased attention because they can model differences in item difficulty and discrimination 
parameters. Differences in difficulty of items between groups reflect uniform DIF while differences in item 
discrimination parameters reflect nonuniform DIF. Logistic regression and IRT procedures are model-based. They 
both can identify uniform and nonuniform DIF for dichotomous and polytomous items.  It is essential to understand 
the related SAS procedures and apply them appropriately to identify DIF items. First, I showed how to conduct DIF 
analyses by using the FREQ, LOGISTIC, GENMOD, GLIMMIX, and NLMIXED procedures. Second, I used SAS/IML 
to call an R package - difR to conduct DIF analyses and then compared the results between the SAS procedures and 
difR. All the analyses were conducted using SAS 9.3 and R 2.15.3. 
 

DATA SOURCES 

In this paper I used two datasets, collected from a questionnaire, called Verbal Aggression Assessment, for 
illustrative purposes. The datasets can be downloaded from http://bearcenter.berkeley.edu/page/materials-
explanatory-item-response-models. The two datasets have the same variables and data structure but different coding 
categories. One dataset, referred to verb_poly, has polytomous items, coded as 0, 1, or 2, whereas the other, as 
verb_dich, has dichotomous items, coded as 0 or 1. The item response values 1 and 2 in verb_poly were recoded as 
1 in verb_dich. The datasets include 26 variables (24 items in the questionnaire, Gender, and Anger) and 316 
responders (243 females and 73 males). The responders filled out a behavioral questionnaire about how to describe 
their frustrating situation in verbal aggression responses (i.e. S1DoScold, S1WantScold). The male group was 
designated as the reference group (gender = 1) and the female group (gender = 0) as the focal group. In this paper, 
the 0.05 significance level was used as the significance threshold.  
 



2 
 

GENERALIZED MANTEL-HAENSZEL PROCEDURE  

The MH DIF procedure compared dichotomous item performance between two groups after matching responders on 
overall scores. Responders in the focal and reference groups were matched on total test or questionnaire scores by 
dividing responders in both groups into defined strata on those scores. The total scores were generated by summing 
item scores across all items. Estimates of the odds ratio for a given item, across the strata of the matching variable, 
can be computed from a 2 x 2 x K contingency table with k denoting the k-th stratum, (k = 1,2,…K). Table 1 shows 
the 2 x 2 contingency table for the k-th stratum of an item. The ܽ, ܾ, ܿ, and ݀ represent the numbers of 
responders in the cells. ܰ denotes the number of responders in the k-the stratum. 
 

 Response (1) Response (0) Total 

Reference group ܽ ܾ  

Focal group ܿ ݀  

Total   ܰ 

Table 1. k-th stratum of 2 x 2 table  

 

Some DIF occurs if the odd ratio for an item is greater than 1 or less than 1. The common odds-ratios formula is: 
 

ܱܴெு ൌ
∑ܽ݀/ ܰ

∑ ܾܿ / ܰ
 

 
In the SAS system, the Cochran-Mantel-Haenszel statistic (Landis, Heyman, & Koch, 1978) can be generated using 
the FREQ procedure. The CMH option in the TABLE statement requests this statistic. Total scores were summed 
across all 24 items as the matching variable. Responders were stratified on total scores using PROC RANK. The 
CMH statistics were separately obtained for each item. For any given item, the null hypothesis is that there is no 
association between the defined groups (gender in the examples below) and the item responses across strata. The 
SAS statements for the example dataset are as follows.  
 

DATA verbal_dich; 
  SET verbal_dich; 
  score = sum(of S1WantCurse -- S4DoShout); 
RUN; 
PROC RANK DATA=verbal_dich OUT=Verbal group=10;   
  VAR score;     
  RANKS stratum;   
RUN; 
PROC FREQ DATA=Verbal; 
  TABLES stratum * Gender * S3DoCurse /CMH noprint; 
RUN; 

 
Table 2 shows the SAS output. The CMH χ2 statistic is 8.002 with 1 degree of freedom with a probability level of 
0.005. This means that the males performance on this item (S3Docurse) is significantly different from that of the 
females after controlling for total scores. The odds ratio is 2.125, which suggests that the odds of males responding 
positively to this item are 2.125 times higher than that of the females. The results indicate that uniform DIF occurs in 
this item. The Breslow-Day Test results imply that the odds ratios between the two groups vary significantly across 
strata, indicating nonuniform DIF.  
 

 DF Value Prob 95% CI 

Cochran-Mantel-Haenszel Statistics 1 8.002 0.005  

(Odds Ratio) 2.125  (1.112, 4.053) 

Breslow-Day Test for Homogeneity of the Odds Ratios 9 23.614 0.005  

Table 2. Summarized Results of MH methods 
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LOGISTIC REGRESSION 

The logistic regression DIF procedure can identify uniform and nonuniform DIF for both dichotomous and polytomous 
items. For each item, three models with increasing numbers of predictors are used. The probability of a positive 
response to an item is modeled as a function of total scores, group, and the interaction between total score and group. 
The item shows DIF if the model fit statistic (-2LogL) is improved when group and interaction are added to the model, 
in order. The group estimate coefficients (ߚଶ) are associated with uniform DIF while the interaction estimates (ߚଷ) are 
related to nonuniform DIF. Like the MH procedure, responders’ values on the trait being measured are represented 
by their total scores. The models are:  
 

ሺܲሻݐ݈݅݃		:1	݈݁݀ܯ ൌ ߚ   ߠଵߚ

ሺܲሻݐ݈݅݃		:2	݈݁݀ܯ ൌ ߚ  ߠଵߚ   ଶܼߚ

ሺܲሻݐ݈݅݃		:3	݈݁݀ܯ ൌ ߚ  ߠଵߚ  ଶܼߚ   ܼߠଷߚ

 

where θ denotes the value of the responder on the trait, and Z denotes group membership (e.g. gender or race), and 
 ሺܲሻ denotes the logit of the probability of responders answering positively or correctly. The likelihood ratio testݐ݈݅݃
(LRT) is used to compare the likelihood of two models. The model with the smaller -2logL has better fit to the data. 
The LRT statistic is calculated by: 
 

ଶܩ ൌ ሾെ2݈݊ܮሺ݉ݎ_݈݁݀ሻሿ െ ሾെ2݈݊ܮሺ݈݉݁݀_݂ሻሿ~߯ଶሺௗሻ 
 

where model_r denotes reduced models and model_f denote full models. ܩଶ follows the chi square distribution and d 
is the difference in numbers of parameter between the reduced and full models. The null hypothesis is that item 
parameters between reference and focal group do not differ. Uniform DIF can be identified by comparing the LRT 
statistic between Models 1 and 2, with degree of freedom (df) = 1. Nonuniform DIF is tested by comparing Models 2 
and 3, with df = 1. An overall test of DIF can be conducted by comparing Models 1 and 3, with df = 2.  
 
Several SAS procedures can be used to carry out logistic regression analysis. For illustrative purposes, this paper 
only shows how to use the LOGISTIC and GENMOD procedures to detect DIF for dichotomous and polytomous 
items, respectively. Since the items in the polytomous data used in the example are ordinal, the LINK=CLOGIT option 
in PROC GENMOD was chosen because it fits the cumulative logit model when items have more than two response 
categories.  The LOGISTIC procedure fits linear logistic regression models for dichotomous or polytomous response 
categories using Fisher’s method to maximize the likelihood (ML) function. PROC GENMOD fits generalized linear 
logistic regression models using the Newton-Raphson method to maximize the likelihood. 

 
The LOGISTIC and GENMOD procedures, by default, set the reference level to 0, which can be changed in the 
CLASS statement. The three logistic regression models are fit in order and the item called “S3DoCurse” was chosen 
as a response variable. The variable score is the total score. The SAS codes are as follows: 
 
  PROC LOGISTIC DATA=verbal_dich;  *Model 1; 
   MODEL S3DoCurse=score /LINK=logit; 
  RUN; 
  PROC LOGISTIC DATA=verbal_dich; *Model 2; 
    MODEL S3DoCurse=score gender / LINK=logit; 
  RUN; 
  PROC LOGISTIC DATA=verbal_dich;  *Model 3; 
    MODEL S3DoCurse=score gender score*gender / LINK=logit; 
  RUN; 
  PROC GENMOD DATA=verbal_poly;  *Model 1; 
    MODEL S3DoCurse=score /LINK=clogit DIST=mutl; 
  RUN; 
  PROC GENMOD DATA=verbal_poly;  *Model 2; 
    MODEL S3DoCurse=score gender/LINK=clogit DIST=mutl; 
  RUN; 
  PROC GENMOD DATA=verbal_poly;  *Model 3; 
    MODEL S3DoCurse=score gender score*gender/LINK=clogit DIST=mutl; 
  RUN; 

  
A summary of results is shown in Outputs 1 and 2. 
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 -2logL 
 ଷߚ ଶߚ ଵߚ

Estimate p Estimate P Estimate P 

Model 1 351.511 -0.217 <.0001     

Model 2 344.368   -0.822 0.008   

Model 3 344.273     0.021 0.757 

Output 1. Summarized output from PROC LOGISTIC 

 

 Full Log Likelihood 
 ଷߚ ଶߚ ଵߚ

Estimate P Estimate P Estimate P 

Model 1 -175.7556 -0.125 <.0001     

Model 2 -172.1839   -0.745 0.006   

Model 3 -251.5534     0.032 0.305 

Output 2. Summarized output from PROC GENMOD 

 

In Output 1, the chi square statistic ߯ଶሺଵ,.ହሻ	= 3.841 is smaller than the ܩଶ(Model1 – Model3) = 7.143. Thus, the item 

may have uniform DIF. However, ܩଶ(Model2 – Model3) = 0.095 is smaller than the chi square statistic. The item does 
not show nonuniform DIF. In Model 1, ߚଵ is significantly different from zero, which suggests that the log odds of 
answering 1 on this item decreases as total scores increase. In Model 2, ߚଶ indicates that the odds of performance on 
this item are significant different between the reference and focal groups. In Model 3, ߚଷ is not significantly different 
from zero, indicating that there is no nonuniform DIF between the groups. Each of the 24 items was separately 
analyzed with logistic regression models. PROC GENMOD provides the log likelihood statistic denoted “Full Log 
Likelihood”, which is multiplied by -2 to get -2LogL. The results generated from PROC GENMOD are consistent 
results with those from PROC LOGISTIC. Six items have shown uniform DIF: 6, 14, 16, 17, 19, and 20. No items 
show nonuniform DIF.  
 

ITEM RESPONSE THEORY 

In this section, I illustrated using IRT mixed effects models to detect DIF by using two SAS procedures - PROC 
NLMIXED and PROC GLIMMIX. The general idea of mixed effect models is to treat item parameters as fixed effects 
and responders’ parameters as random effects. PROC NLMIXED is modeling nonlinear mixed models and PROC 
GLIMMIX is modeling linear mixed models with various fitting methods. One advantage of the NLMIXED procedure is 
that mathematical formulations can be stated explicitly in this procedure, which is not available for the GLIMMIX 
procedure.  
 
IRT DIF procedures have three model types: 1-parameter (1PL), 2-parameter (2PL), and 3-parameter (3PL) logistic 
regression. 1PL IRT can only detect uniform DIF while 2PL- and 3PL- IRT can detect both uniform and nonuniform 
DIF. The models for 1PL-, 2PL- and 3PL-IRT are:   
 

ݔ൫ݎܲ	:ܮ1ܲ ൌ 1൯ ൌ
1

1  exp	ሾെ൫ߠെ ܾ൯ሿ
 

ݔ൫ݎܲ	:ܮ2ܲ ൌ 1൯ ൌ
1

1  exp	ሾെα୨൫ߠെ ܾ൯ሿ
 

ݔ൫ݎܲ	:ܮ3ܲ ൌ 1൯ ൌ ܿ  ሺ1 െ ܿሻ
1

1  exp	ሾെα୨൫ߠെ ܾ൯ሿ
 

 
where ܾ is the difficulty for item j, ߠ is the i-th responder’s trait parameter, ߙ	is the discrimination parameter for item j 
that allows different items to differentially discriminate among responders, and ܿ is the pseudoguessing parameter 
for item j. ܲݎ൫ݔ ൌ 1൯ is the probability of i-th responder responding positively (with the response coded as 1 rather 
than that coded as 0) to item j.  
 
The discrimination parameter (ߙ) can’t be specified in PROC GLIMMIX so that this procedure can only model the 1PL 
IRT and detect uniform DIF. Thus, this paper uses PROC GLIMMIX to fit the 1PL IRT model (also called the Rasch 
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model) and PROC NLMIXED is used to fit 1PL- and 2PL- IRT models for illustrative purposes. Since there are only 
316 responders in the verbal aggression dataset and it may not work well for IRT models with polytomous items 
(Bond & Fox, 2007). Therefore, this paper only illustrates IRT models with dichotomous items. For polytomous items 
with sufficient numbers of responders, researchers can modify PROC NLMIXED statements to fit 1-PL or 2PL- partial 
credit and graded response models. 
 
Both the GLIMMIX and NLMIXED procedures require the data with “long format”. This means that a single response 
variable contains all of the item responses. Dummy variables are created for all items so that they can index and 
differentiate items. In the verbal aggression data, a response variable called y is created to include all the responses 
for 24 items, one variable called Person for each responder, one variable Item for each item, and the 24 dummy 
variables (called item1, item2, …, item24) for item indexing. Table 3 illustrates this data structure. 
 
Person Item Gender Item1 Item2 Item3 Item4 …   

1 Item1 1 1 0 0 0    

1 Item2 1 0 1 0 0    

1 Item3 1 0 0 1 0    

1 Item4 1 0 0 0 1 

… 

   

2 Item1 2 1 0 0 0    

Table 3. Data Structure for the GLIMMIX and NLMIXED procedures 

 

IRT - PROC GLIMMX 

In this paper I used an exploratory approach to detect DIF. First, a null model (intercept-only) was applied to the data, 
which specified that all item difficulty parameters (b) are the same. Second, all 24 items were added to the model and 
thus the difficulty parameters for items were allowed to vary. Third, the interaction effects between gender and items 
were added to the model to detect DIF. Since the models were nested, the likelihood ratio test was used to compare 
the likelihood of pairs of models. Items show DIF in overall tests if the model fit statistics are improved.   
 
The following statements are used to build the three models in order: the null model with random responders, the 
item model with random responders, and item and the interaction effect model. In the MODEL statement, LINK and 
DIST options specify using logit link functions and the response variable y is binary. The RANDOM statement 
specifies random intercept effects for each responder and their G-side covariance structures. Item 24 was set as the 
reference item by default. The estimated item difficulty for each item needs to be adjusted accordingly.  
 
/*Model 1: all items have the same difficulty b*/ 
PROC GLIMMIX DATA=verbal_dich METHOD=quadrature GRADIENT NOCLPRINT ORDER=data; 
 CLASS person; 
 MODEL y = /DIST=binary LINK=logit SOLUTION; 
 RANDOM intercept/SUBJECT =person TYPE=UN; 
RUN; 
/*Model 2: random person and fixed item*/ 
PROC GLIMMIX DATA=verbal_dich METHOD =quadrature GRADIENT NOCLPRINT ORDER=data; 
 CLASS person item; 
 MODEL y (event='1')= item/SOLUTION LINK=LOGIT DIST=BINARY; 
 RANDOM INTERCEPT / SUBJECT=person TYPE=UN G; 
run; 
/*Model 3: detect DIF for gender difference*/ 
PROC GLIMMIX DATA=verbal_dich METHOD =laplace GRADIENT NOCLPRINT NOITPRINT ORDER=data; 
 CLASS gender person item; 
 MODEL y (event='1')= item gender item*gender/SOLUTION LINK=CLOGIT DIST=BINARY; 
 RANDOM INTERCEPT / SUBJECT=person TYPE=UN G;  
RUN; 

 
In Table 4, ܩଶ = 9506.36 – 8073.88 = 1432.48 between Model 1 and 2 is larger than χଶଷ

ଶ  = 35.172 at the .05 
significance level. Thus, Model 2 is a better fit than Model 1. Similarly, Model 3 with the lowest -2LogL has the best fit 
to the data. The estimated coefficients are shown in SAS output “Solutions for Fixed Effects”, see Output 3. Based on 
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estimated coefficients and significance levels, items 14, 16, 17, 19, and 20 show significant uniform DIF between the 
reference and focal groups.  
 
 GLIMMIX (-2LogL) NLMIXED (-2LogL) 
Model 1: Intercept model with random responder 9506.36 8129.6
Model 2: Item model with random responder 8073.88 8101.2
Model 3: Item and interaction model   8005.06 9223.7 
Table 4. Model fit statistics 
 

 
 
Output 3. Solution for Fixed effects (Model 3) from PROC GLIMMIX 
 
IRT- PROC NLMIXED  
 
Next I used PROC NLMIXED to build logistic mixed-effect models to detect DIF. This method differs from the 
GLIMMIX procedure by introducing DIF parameters into the model. The mathematical formulation and procedures 
were introduced in detail by Meulders and Xie (2004) and van den Noortgate and De Boeck (2005). In general, 
questionnaire items are regarded as fixed effects and responders’ parameters as random effects. The main idea is 
that DIF occurs if item parameters, discrimination α and difficulty b, differ between groups. Therefore, two DIF 
parameters δ and ߦ	are added to the model as a linear function of predictors. The δ reflects uniform DIFs and	ߦ 
nonuniform DIF. The two parameters interact with group variable Z. The item shows DIF if the DIF parameters are 
significantly different from 0. The probability of a success or positive response is modeled by: 
 

ݔ൫ݎܲ ൌ 1൯ ൌ
1

1  exp	ሾെሺα୨  ܼζሻ൫ߠെሺܾ  ሻ൯ሿߜܼ
 

 
where j denotes item j and i denotes the i-th responder. For the 1PL model, two types of parameters, b and δ, need to 
be defined in the statements of PROC NLMIXED. For 2PL models, the four types of parameters, ߙ, b, δ, and ζ are 
free to be estimated. The 1PL model statements are as follows:  
 
   PROC NLMIXED DATA=verbal_dich NOAD METHOD=gauss QPOINT=22;  

PARMS b0-b24=0 d1-d23=0 sd1=1 sd0=0.8 mu1=0;      
b=b0+b1*item1+b2*item2+b3*item3+b4*item4+b5*item5+b6*item6+b7*item7+b8*item8+b9*it

em9+b10*item10+b11*item11+b12*item12+b13*item13+b12*item12+b15*item15+b16*item16+b17*i
tem17+b18*item18+b19*item19+b20*item20+b21*item21+b22*item22+b23*item23+b24*item24; 
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delta=d1*item1+d2*item2+d3*item3+d4*item4+d5*item5+d6*item6+d7*item7+d8*item8+d9*i
tem9+d10*item10+d11*item11+d12*item12+d13*item13+d12*item12+d15*item15+d16*item16+d17*
item17+d18*item18+d19*item19+d20*item20+d21*item21+d22*item22+d23*item23;  

ex= exp(theta-b-delta*gender); 
prob = ex/(1+ex); 
MODEL y ~ BINARY(prob); 
RANDOM theta ~ NORMAL(gender*mu1,(1-gender)*sd0*sd0+gender*sd1*sd1)SUBJECT=person;  

   RUN; QUIT;  
 
The coefficients b1 – b24 are difficulty parameters of items, d1 – d23 are DIF parameters, and d24 is the reference 
parameter. The theta (θ) reflecting the responders’ parameters are assumed to follows group-specific normal 
distributions. Thus, theta (θ) follows a normal distribution with mean = 0 and SD = 0.8 for females and a N(0, 1) 
distribution for males. The estimates of several DIF parameters are shown in Output 4. 
 

 
Output 4. DIF parameters for 1PL IRT from PROC NLMIXED 
 
For the 2PL IRT model, three more statements are added to the NLMIXED procedure for detecting nonuniform DIF. 
 

*discrimination parameters; 
alpha=a1*item1+a2*item2+a3*item3+a4*item4+a5*item5+a6*item6+a7*item7+a8*item8+a9*it

em9+a10*item10+a11*item11+a12*item12+a13*item13+a12*item12+a15*item15+a16*item1
6+a17*item17+a18*item18+a19*item19+a20*item20+a21*item21+a22*item22+a23*item23+
a24*item24; 

*nonuniform DIF parameter; 
zeta=e1*item1+e2*item2+e3*item3+e4*item4+e5*item5+e6*item6+e7*item7+e8*item8+e9*ite

m9+e10*item10+e11*item11+e12*item12+e13*item13+e12*item12+e15*item15+e16*item16
+e17*item17+e18*item18+e19*item19+e20*item20+e21*item21+e22*item22+e23*item23; 

ex= exp((alpha+zeta*gender)*(theta-b-delta*gender)); 
 
Table 4 shows that Model 2 has the best model fit. Based on estimated coefficients and their p-values, items 16, 17, 
19, and 20 have been identified as having uniform DIF. None of the 24 items show any nonuniform DIF. In Table 5, 
we can see that DIF in item 6 can be detected by both the MH and logistic regression procedures, but not the IRT 
procedures. It is possible that there are not sufficient data for IRT to detect DIF. 
 
R PACKAGE – difR 
 
In addition to using the SAS procedures to measure DIF, researchers can also link R packages to the SAS system by 
SAS/IML and then call R functions to conduct DIF analyses. There are several R packages available for different DIF 
analyses. One R package – difR (Magis et al., 2010) is used here for illustrative purposes. difR includes many DIF 
procedures, for example, MH, logistic regression, and IRT, but they requires dichotomous items. It is worth noting that, 
unlike the SAS system, R is a case-sensitive software. This paper uses R 2.15.3 for demonstration because the 
higher R versions don’t work well with SAS 9.3. The package difR is also needed under the R 2.15.3 version. The –



8 
 

RLANG option must be specified in the SAS system to support access to R language interfaces. The codes are as 
follows: 
 
  PROC OPTIONS OPTION=rlang; RUN; 
  PROC IML;      
  RUN ExportDataSetToR("Work.Verbal", "verbal" );  
    submit / R;  
      library(difR);  
      verbal <- verbal[colnames(verbal)!="Anger"]  
      difMH(verbal, group="Gender", focal.name=1); 
      difLogistic(verbal[,1:24], group=verbal[,25], focal.name=1); 
      difLord(verbal, group="Gender", focal.name=1, model="1PL"); 
    endsubmit;  
  QUIT; 
 
The ExportDataSetToR() function is used here to transform data from SAS to R. In difR, the reference level = 1 is set 
by default. Thus, the coefficient estimates from R are opposite in sign to those from SAS outputs. The variable Anger 
needs to be removed from the data before DIF analyses otherwise it will be treated as an item. As shown in Table 5, 
item 16, 17, and 19 have significant DIF for all the DIF procedures while the other items need more careful 
investigation due to the possibility of other effects, for example, test or questionnaire length and effect size.   
 

Item 
MH Logistic Regression IRT 

FREQ difMH LOGISTIC difLogistic GENMOD GLIMMIX NLMIXED difLord 

6 Y Y Y Y Y   Y 
14 Y Y Y  Y Y   
16 Y Y Y Y Y Y Y Y 
17 Y Y Y Y Y Y Y Y 
19 Y Y Y Y Y Y Y Y 
20 Y Y Y  Y Y Y  

Table 5. Summarized results from SAS and R 
 
CONCLUSION 
 
This paper demonstrates how to flexibly conduct multiple DIF analyses by using different SAS procedures. The 
Mantel-Haenszel procedure can be easily implemented in the FREQ procedure. It is generally used to detecting 
uniform DIFs for dichotomous items. For each item, DIF occurs if the odd ratios is either less than or greater than 1. 
The LOGISTIC and GENMOD procedures can be used to conduct logistic regression DIF for both dichotomous and 
polytomous items. For each item, three models are built in order, likelihood functions are compared between models, 
and estimates of coefficients are tested for significance. In order to identify DIF for all items conveniently, SAS 
macros need to be coded by researchers.  
 
The GLIMMIX and NLMIXED procedures are used to build mixed effect models for IRT DIF procedures. They give 
researchers a comprehensive and parsimonious way to conduct DIF analyses since all items, group variables, and 
interaction variables are included into one model. However, it may take a long time to run PROC NLIMIXED when 
there are a large number of responders and items in a dataset. The GLIMMIX procedure can only implement the 1PL 
IRT model while the NLMIXED procedure can apply the 1PL-, 2PL-, and 3PL- IRT models, by adding corresponding 
mathematical formulas in its statements. Researchers may need to spend more time on an exploratory approach on 
data. All the procedures don’t require programming expertise but they require basic statistical knowledge of DIF and 
these SAS procedures and cautious interpretation of SAS outputs.  
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