Multi-collineartity, Variance Inflation
and Orthogonalization in Regression


Chong Ho (Alex) Yu, Ph.D., D. Phil. (2022)

References

Aiken, L. S. & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Sage.

Akaike, Hirotsugu. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csaki (Eds.), International Symposium on Information Theory (pp. 267-281). Akademia Kiado.

Althauser, R. P. (1971). Multicollinearity and non-additive regression models. In H. Blaock (Ed.) Causal models in the social sciences (pp. 453-472). Aldine.

Belsley, D. A.; Kuh, E.; & Welsch, R. E. (1980). Regression diagnostics : Identifying influential data and sources of collinearity. John Wiley & Sons.

Bring, J. (1996). A geometric approach to compare variables in a regression model. The American Statistician, 50, 57-62.

Burnham, K. P., and Anderson, D.R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed). Springer-Verlag.

Burnham, K. P., and Anderson, D.R. (2004), Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research, 33, 261-304.

Burrill, D. (1997). Modeling and interpreting interactions in multiple regression.  http://www.minitab.com/

Cassel, C.; Westlund, A. H.; & Hackl, P. (1999). Robustness of partial least-squares method for estimating latent variable quality structures. Journal of Applied Statistics, 26, 435-448.

Faraway, J. (2005). Extending the linear model with R: Generalized linear, mixed effects and nonparametric regression models. Chapman and Hall.

Fisher, G. A. (1988). Problems in the use and interpretation of product variables. In J. S. Long (ed.). Common problems/proper solutions: Avoiding error in quantitative research (p.86-107). Sage.

Hacking, I. (1992). The taming of chance. Cambridge University Press.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021).  An introduction to statistical learning: With applications in R (2nd ed). Springer.

Johnston, R., Jones, K., Manley, D. (2018). Confounding and collinearity in regression analysis: A cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Quality and Quantity, 52(4), 1957-1976. doi:10.1007/s11135-017-0584-6

June, J.  E. (1997). Variables contributing to promotion in a combat support hospital. Unpublished dissertation. Adler School of Professional Psychology.

Leahy , K. (2001). Multicollinearity: When the solution is the problem. In Olivia Parr Rud (Ed.) Data Mining Cookbook (pp. 106 - 108). John Wiley & Sons, Inc,

Leigh,  J.  J. (1996). Admissibility of students to Ph.D. programs in counseling psychology. Unpublished dissertation. Boston College.

Menard S. (2001). Applied logistic regression analysis (2nd ed). Sage.

Mooney, C. Z. & Duval, R. D. (1993). Bootstrapping: A nonparametric approach to statistical inference. Sage.

Morris,  J. D. (1982). Ridge regression and some alternative weighting techniques: A comment on Darlington. Psychological Bulletin, 91, 203-210.

Neter, J., Wasserman W., & Kutner, M. H. (1990). Applied linear statistical models (3rd ed.).  IRWIN.

Pagel, M. D. & Lunneberg, C. E. (1985). Empirical evaluation of ridge regression. Psychological Bulletin, 97, 342-355.

Rodgers, J., Nicewander, W. A., & Toothaker, L. (1984). Linearly dependent, orthogonal, and uncorrelated variables. The American Statistician, 38, 133-134.

Salvucci, S.; Walter, E., Conley, V; Fink, S; & Saba, M. (1997). Measurement error studies at the National Center for Education Statistics. U. S. Department of Education.

Saville, D. & Wood, G. R. (1991). Statistical methods: The geometric approach. Springer-Verlag.

Suzanne K., & Preston, J. (2015, May). Best practices for running and presenting SEM. Paper presented at Western Psychological Association Conference, Las Vegas, NV.

Tobias, R. D. (1999). An introduction to partial least squares regression.SAS Institute.

Vaughan, T. S., & Berry, K. E. (2005). Using Monte Carlo techniques to demonstrate the meaning and implications of multicollinearity. Journal of Statistics Education, 13(1).  www.amstat.org/publications/jse/v13n1/vaughan.html

Vittinghoff, E., Glidden, D. V., Shiboski, S. C., & McCulloch, C. E. (2012). Regression methods in biostatistics: Linear, logistic, survival, and repeated measures models (2nd ed). Springer.

Wickens, T. (1995). The geometry of multivariate statistics. Lawrence Erlbaum Associates, Inc.

Yang, Y. (2005). Can the strengths of AIC and BIC be shared? Biometrika, 92, 937-950.



Back


Menu


Next


Navigation

Index

Simplified Navigation

Table of Contents

Search Engine

Contact