References
Aiken, L. S. & West, S. G. (1991). Multiple
regression: Testing and interpreting interactions. Sage.
Akaike, Hirotsugu. (1973). Information theory and an
extension of the
maximum likelihood principle. In B. N. Petrov and F. Csaki (Eds.), International
Symposium on Information Theory (pp. 267-281). Akademia
Kiado.
Althauser, R. P. (1971). Multicollinearity and
non-additive regression models. In H. Blaock (Ed.) Causal
models in the social sciences (pp. 453-472). Aldine.
Belsley, D. A.; Kuh, E.; & Welsch, R. E.
(1980). Regression diagnostics : Identifying influential data
and sources of collinearity. John Wiley & Sons.
Bring, J. (1996). A geometric approach to compare
variables in a regression model. The American Statistician,
50, 57-62.
Burnham, K. P., and Anderson, D.R. (2002). Model
selection and multimodel inference: A practical information-theoretic
approach (2nd ed). Springer-Verlag.
Burnham, K. P., and Anderson, D.R. (2004), Multimodel
inference: understanding AIC and BIC in model selection. Sociological
Methods and Research, 33, 261-304.
Burrill, D. (1997). Modeling and interpreting
interactions in multiple regression. http://www.minitab.com/
Cassel, C.; Westlund, A. H.; & Hackl, P.
(1999). Robustness of
partial least-squares method for estimating latent variable quality
structures. Journal of Applied Statistics, 26,
435-448.
Faraway, J. (2005). Extending the linear
model with R: Generalized linear, mixed effects and nonparametric
regression models. Chapman and Hall.
Fisher, G. A. (1988). Problems in the use and
interpretation of product variables. In J. S. Long (ed.). Common
problems/proper solutions: Avoiding error in quantitative research
(p.86-107). Sage.
Hacking, I. (1992). The taming of chance.
Cambridge University Press.
James, G., Witten, D., Hastie, T., & Tibshirani, R.
(2021).
An introduction to statistical learning: With applications in R
(2nd ed). Springer.
Johnston, R., Jones, K., Manley, D. (2018). Confounding and
collinearity in regression analysis: A cautionary tale and an
alternative procedure, illustrated by studies of British voting
behaviour. Quality
and Quantity, 52(4), 1957-1976.
doi:10.1007/s11135-017-0584-6
June, J. E. (1997). Variables
contributing to promotion in a combat support hospital.
Unpublished dissertation. Adler School of Professional Psychology.
Leahy , K. (2001). Multicollinearity: When the
solution is the problem. In Olivia Parr Rud (Ed.) Data Mining
Cookbook (pp. 106 - 108). John Wiley & Sons, Inc,
Leigh, J. J. (1996). Admissibility
of students to Ph.D. programs in counseling psychology.
Unpublished dissertation. Boston College.
Menard S. (2001). Applied logistic
regression analysis (2nd ed). Sage.
Mooney, C. Z. & Duval, R. D. (1993). Bootstrapping:
A nonparametric approach to statistical inference. Sage.
Morris, J. D. (1982). Ridge regression and
some alternative weighting techniques: A comment on Darlington. Psychological
Bulletin, 91, 203-210.
Neter, J., Wasserman W., & Kutner, M. H.
(1990). Applied linear statistical models (3rd ed.).
IRWIN.
Pagel, M. D. & Lunneberg, C. E. (1985).
Empirical evaluation of ridge regression. Psychological
Bulletin, 97, 342-355.
Rodgers, J., Nicewander, W. A., & Toothaker,
L. (1984). Linearly dependent, orthogonal, and uncorrelated variables. The
American Statistician, 38, 133-134.
Salvucci, S.; Walter, E., Conley, V; Fink, S; & Saba, M.
(1997). Measurement error studies at the National Center for
Education Statistics. U. S. Department of Education.
Saville, D. & Wood, G. R. (1991). Statistical
methods: The geometric approach. Springer-Verlag.
Suzanne K., & Preston, J. (2015, May). Best
practices for running and presenting SEM. Paper presented at
Western Psychological Association Conference, Las Vegas, NV.
Tobias, R. D. (1999). An introduction to
partial least squares regression.SAS Institute.
Vaughan, T. S., & Berry, K. E. (2005). Using
Monte Carlo techniques to demonstrate the meaning and implications of
multicollinearity. Journal of Statistics Education,
13(1).
www.amstat.org/publications/jse/v13n1/vaughan.html
Vittinghoff, E., Glidden, D. V., Shiboski, S. C.,
& McCulloch, C. E. (2012). Regression methods in
biostatistics: Linear, logistic, survival, and repeated measures models
(2nd ed). Springer.
Wickens, T. (1995). The geometry of
multivariate statistics. Lawrence Erlbaum Associates, Inc.
Yang, Y. (2005). Can the strengths of AIC and BIC be
shared? Biometrika, 92, 937-950.